Some Presic Type Generalizations of the Banach Contraction Principle

K.P.R. Rao, Md. Mustaq Ali and Brian Fisher

ABSTRACT. In this paper, we extend and generalize Presic Type theorems for a pair of maps and Jungck type maps.

1. Introduction and Preliminaries

In 1932 Banach [2] proved the following theorem:

Theorem 1.1 ([2]). Let (X,d) be a complete metric space and let T be a mapping of X into X satisfying the inequality $d(Tx,Ty) \leq \lambda d(x,y)$ for all $x, y \in X$, where $0 \leq \lambda < 1$. Then T has a unique fixed point in X.

Since then, many generalizations of this principle have been made by several authors. Considering the convergence of certain sequences Presic [3] proved the following theorem.

Theorem 1.2 ([3]). Let (X, d) be a complete metric space, k a positive integer and let T be a mapping of X^k into X , satisfying the following contractive type condition

$$
(1.1) \quad d(T(x_1, x_2, x_3, \dots, x_k), T(x_2, x_3, x_4, \dots, x_k, x_{k+1})) \\
\leq q_1 d(x_1, x_2) + q_2 d(x_2, x_3) + \dots + q_k d(x_k, x_{k+1})
$$

for every $x_1, x_2, x_3, x_4, \ldots, x_k, x_{k+1} \in X$, where q_1, q_2, \ldots, q_k are non-negative constants such that $q_1 + q_2 + \ldots + q_k < 1$. Then there exists a unique point $x \in X$ such that $T(x, x, x, \ldots, x) = x$.

Moreover, if $x_1, x_2, x_3, \ldots, x_k$ are arbitrary points in X and if for all $n \in$ $N, x_{n+k} = T(x_n, x_{n+1}, \ldots, x_{n+k-1}),$ then the sequence $\{x_n\}$ is convergent and $\lim x_n = T(\lim x_n, \lim x_n, \dots, \lim x_n).$

Ciric and Presic [1] generalized Theorem 1.2 as follows:

Received by the editors 18.10.2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47H10; 54H25.

Key words and phrases. Weakly k-compatible maps, Jungck Type maps, Common fixed point.

Theorem 1.3. Let (X, d) be a complete metric space, k a positive integer and let T be a mapping of X^k into X satisfying the following contractive type condition

$$
\begin{aligned} d(T(x_1, x_2, x_3, \dots, x_k), T(x_2, x_3, x_4, \dots, x_k, x_{k+1})) \\ \leq \lambda \max\{d(x_i, x_{i+1})/1 \leq i \leq k\} \end{aligned}
$$

for every $x_1, x_2, x_3, x_4, \ldots, x_k, x_{k+1} \in X$, where $0 \leq \lambda \leq 1$. Then there exists a point $x \in X$ such that $T(x, x, x, \ldots, x) = x$.

Moreover, if $x_1, x_2, x_3, \ldots, x_k$ are arbitrary points in X and if for all $n \in$ $N, x_{n+k} = T(x_n, x_{n+1}, \ldots, x_{n+k-1}),$ then the sequence $\{x_n\}$ is convergent and $\lim x_n = T(\lim x_n, \lim x_n, \dots, \lim x_n)$. If in addition, we suppose that on the diagonal $\Delta \subset X^k$, the condition

(1.3)
$$
d(T(u, u, \dots, u), T(v, v, \dots, v)) < d(u, v)
$$

holds for all distinct $u, v \in X$, then x is the unique point in X with $T(x, x, \ldots, x) = x.$

Now in this paper we extend and generalize the above theorems for a pair of mappings and Jungck type mappings.

2. Main result

Theorem 2.1. Let (X, d) be a complete metric space, k a positive integer and let S, T be mappings of X^{2k} into X satisfying the following contractive type conditions

$$
\begin{aligned} d(S(x_1, x_2, \dots, x_{2k-1}, x_{2k}), T(x_2, x_3, \dots, x_{2k}, x_{2k+1})) \\ \leq \lambda \max\{d(x_i, x_{i+1}) : 1 \leq i \leq 2k\}, \end{aligned}
$$

for all $x_1, x_2, \ldots, x_{2k}, x_{2k+1} \in X$ and

$$
\begin{aligned} d(T(y_1, y_2, \dots, y_{2k-1}, y_{2k}), S(y_2, y_3, \dots, y_{2k}, y_{2k+1})) \\ \leq \lambda \max\{d(y_i, y_{i+1}) : 1 \leq i \leq 2k\}, \end{aligned}
$$

for all $y_1, y_2, \ldots, y_{2k}, y_{2k+1} \in X$, where $0 \leq \lambda < 1$.

Suppose x_1, x_2, \ldots, x_{2k} are arbitrary points in X and for all $n \in N$ let

$$
x_{2k+2n-1} = S(x_{2n-1}, x_{2n}, x_{2n+1}, \ldots, x_{2n+2k-2})
$$

and

 $x_{2k+2n} = T(x_{2n}, x_{2n+1}, x_{2n+2}, \ldots, x_{2n+2k-1}).$

Then the sequence $\{x_n\}$ is convergent to some $x \in X$ such that

(A)
$$
S(x, x, ..., x) = x = T(x, x, ..., x).
$$

In addition, if

- (i) $2k\lambda < 1$, or
- (ii) $d(S(u, u, \ldots, u), T(v, v, \ldots, v)) < d(u, v),$

for all distinct $u, v \in X$, then x is the unique point satisfying (A) .

Now

$$
\alpha_{2k+1} = d(x_{2k+1}, x_{2k+2})
$$

= $d(S(x_1, x_2, ..., x_{2k-1}, x_{2k}), T(x_2, x_3, ..., x_{2k}, x_{2k+1}))$
 $\leq \lambda \max\{d(x_i, x_{i+1}) : i = 1, 2, ..., 2k\}$ (by (2.1))
= $\lambda \max\{\alpha_1, \alpha_2, ..., \alpha_{2k-1}, \alpha_{2k}\}$
 $\leq \lambda \max\{K\theta, K\theta^2, ..., K\theta^{2k-1}, K\theta^{2k}\}$
= $\lambda K\theta$
= $K\theta^{2k+1}$ (since $\theta = \lambda^{1/2k}$)

and so $\alpha_{2k+1} \leq K\theta^{2k+1}$. Similarly

$$
\alpha_{2k+2} = d(x_{2k+2}, x_{2k+3})
$$

= $d(T(x_2, x_3, \dots, x_{2k}, x_{2k+1}), S(x_3, x_4, \dots, x_{2k+1}, x_{2k+2}))$
 $\leq \lambda \max\{d(x_i, x_{i+1}) : i = 2, 3, \dots, 2k+1\}$ (by (2.2))
= $\lambda \max\{\alpha_i/i = 2, 3, \dots, 2k+1\}$
 $\leq \lambda \max\{K\theta^2, K\theta^3, \dots, K\theta^{2k+1}\}$
= $\lambda K\theta^2$
= $K\theta^{2k+2}$ (since $\theta = \lambda^{1/2k}$)

and so $\alpha_{2k+2} \leq K\theta^{2k+2}$. Hence our claim is true.

Now, by our claim, for any $n, p \in N$, we have

$$
d(x_n, x_{n+p}) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \ldots + d(x_{n+p-1}, x_{n+p})
$$

\n
$$
= \alpha_n + \alpha_{n+1} + \ldots + \alpha_{n+p-1}
$$

\n
$$
\le K\theta^n + K\theta^{n+1} + \ldots + K\theta^{n+p-1}
$$

\n
$$
\le K(\theta^n + \theta^{n+1} + \ldots + \theta^{n+p-1} + \ldots)
$$

\n
$$
= K\frac{\theta^n}{1-\theta} \to 0 \quad (\text{as } n \to \infty).
$$

Hence $\{x_n\}$ is a Cauchy sequence. Since X is a complete metric space, there exists a point $x \in X$ such that $x = \lim_{n \to \infty} x_n$. Then for any integer $n,$ using (2.1) and (2.2) , we have

$$
d(S(x, x, ..., x), x_{2n+2k-1}) = d(S(x, x, ..., x), S(x_{2n-1}, x_{2n}, ..., x_{2n+2k-2}))
$$

\n
$$
\leq d(S(x, x, ..., x), T(x, x, ..., x, x_{2n-1}))
$$

\n
$$
+ d(T(x, x, ..., x, x_{2n-1}), S(x, x, ..., x_{2n-1}, x_{2n}))
$$

\n
$$
+ d(S(x, x, ..., x, x_{2n-1}, x_{2n}), T(x, x, ..., x, x_{2n-1}, x_{2n}, x_{2n+1}))
$$

\n
$$
+ d(T(x, x, ..., x, x_{2n}, x_{2n+1}), S(x, x, ..., x, x_{2n}, x_{2n+1}, x_{2n+2})) + ...
$$

\n
$$
+ d(S(x, x, x_{2n-1}, x_{2n}, ..., x_{2n+2k-4}), T(x, x_{2n-1}, x_{2n}, ..., x_{2n+2k-3}))
$$

\n
$$
+ d(T(x, x_{2n-1}, x_{2n}, ..., x_{2n+2k-3}), S(x_{2n-1}, x_{2n}, ..., x_{2n+2k-2}))
$$

\n
$$
\leq \lambda d(x, x_{2n-1}) + \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n})\}
$$

\n
$$
+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), d(x_{2n}, x_{2n+1})\} + ...
$$

\n
$$
+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2})\}
$$

\n
$$
+ ... + \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), ..., d(x_{2n+2k-4}, x_{2n+2k-3})\}
$$

\n
$$
+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), ..., d(x_{2n+2k-3}, x_{2n+2k-2})\}.
$$

Taking the limit as $n \to \infty$, we get

$$
d(S(x, x, \ldots, x), x) \le 0
$$

and so $S(x, x, \ldots, x) = x$.

From (2.1) , we have

 $d(x, T(x, x, \ldots, x)) = d(S(x, x, \ldots, x), T(x, x, \ldots, x)) = 0$

and so $T(x, x, \ldots, x) = x$.

To prove the uniqueness of x, we suppose that there exists a point $y \neq x$ in X such that

$$
S(y, y, \dots, y) = y = T(y, y, \dots, y).
$$

Suppose (i) holds so that $2k\lambda < 1$.

$$
d(x, y) = d(S(x, x, ..., x), T(y, y, ..., y))
$$

\n
$$
\leq d(S(x, x, ..., x), T(x, x, ..., x, y)) + d(T(x, x, ..., x, y), S(x, x, ..., x, y, y))
$$

\n
$$
+ d(S(x, x, ..., x, y, y), T(x, x, ..., x, y, y, y))
$$

\n
$$
+ d(T(x, x, ..., x, y, y, y), S(x, x, ..., x, y, y, y, y))
$$

\n
$$
+ ... + d(S(x, x, y, y, ..., y), T(x, y, y, ..., y))
$$

\n
$$
+ d(T(x, y, y, ..., y), S(y, y, y, ..., y))
$$

\n
$$
+ d(S(y, y, y, ..., y), T(y, y, y, ..., y))
$$

\n
$$
\leq \lambda d(x, y) + \lambda d(x, y) + \lambda d(x, y) + ... + \lambda d(x, y) + \lambda d(x, y) + 0
$$

\n
$$
= 2K\lambda d(x, y) < d(x, y),
$$

\na contradiction. Therefore $y = x$.

Suppose (ii) holds. Then

$$
d(x, y) = d(S(x, x, \dots, x), T(y, y, \dots, y)) < d(x, y),
$$

a contradiction and again $y = x$.

Corollary 2.1. Let (X, d) be a complete metric space, k a positive integer and let S , T be mappings of X^{2k} into X satisfying

$$
\begin{aligned} d(S(x_1, x_2, \dots, x_{2k-1}, x_{2k}), T(x_2, x_3, \dots, x_{2k}, x_{2k+1})) \\ \leq q_1 d(x_1, x_2) + q_2 d(x_2, x_3) + \dots + q_{2k} d(x_{2k}, x_{2k+1}), \end{aligned}
$$

for all $x_1, x_2, x_3, \ldots, x_{2k}, x_{2k+1} \in X$ and

$$
\begin{aligned} d(T(y_1, y_2, \dots, y_{2k-1}, y_{2k}), S(y_2, y_3, \dots, y_{2k}, y_{2k+1})) \\ \leq q_1 d(y_1, y_2) + q_2 d(y_2, y_3) + \dots + q_{2k} d(y_{2k}, y_{2k+1}) \end{aligned}
$$

for all $y_1, y_2, \ldots, y_{2k}, y_{2k+1} \in X$, where q_1, q_2, \ldots, q_{2k} are non-negative constants such that $q_1 + q_2 + \ldots + q_{2k} < 1$. Then there exists unique $x \in X$ such that

$$
S(x, x, x, \ldots, x) = x = T(x, x, x, \ldots, x).
$$

Proof. (2.3) and (2.4) imply the conditions (2.1) and (2.2) respectively with $\lambda = q_1 + q_2 + \ldots + q_{2k}$. Now from Theorem 2.1, there exists $x \in X$ such that

 $S(x, x, \ldots, x) = x = T(x, x, \ldots, x).$

To prove the uniqueness of x, suppose there exists a point $y \neq x$ in X such that

$$
S(y, y, \ldots, y) = y = T(y, y, \ldots, y).
$$

Then

$$
d(x, y) = d(S(x, x, ..., x), T(y, y, ..., y))
$$

\n
$$
\leq d(S(x, x, ..., x), T(x, x, ..., x, y)) + d(T(x, x, ..., x, y), S(x, x, ..., x, y, y))
$$

\n
$$
+ d(S(x, x, ..., x, y, y), T(x, x, ..., x, y, y, y))
$$

\n
$$
+ d(T(x, x, ..., x, y, y, y), S(x, x, ..., x, y, y, y, y)) + \cdots
$$

\n
$$
+ d(S(x, x, y, y, ..., y), T(x, y, y, ..., y))
$$

\n
$$
+ d(T(x, y, y, ..., y), S(y, y, y, ..., y))
$$

\n
$$
+ d(S(y, y, y, ..., y), T(y, y, y, ..., y))
$$

\n
$$
\leq q_{2k}d(x, y) + q_{2k-1}d(x, y) + \cdots + q_{2}d(x, y) + q_{1}d(x, y) + 0
$$

\n
$$
= (q_{1} + q_{2} + ... + q_{2k-1} + q_{2k})d(x, y) < d(x, y),
$$

\nwhich is a contradiction. Therefore $y = x$.

Definition 2.1. Let X be a non empty set, let T be a mapping of X^k into X and let f be a mapping of X into X. Then (f, T) is said to be weakly a k-compatible pair if $f(T(p, p, \ldots, p)) = T(fp, fp, \ldots, fp)$, whenever $p \in X$ is such that $fp = T(p, p, \ldots, p)$.

Theorem 2.2. Let (X, d) be a metric space, k a positive integer, let T be a mapping of X^k into X and let f be a mapping of X into X satisfying

(2.5)
$$
d(T(x_1, x_2, x_3, \dots, x_k), T(x_2, x_3, x_4, \dots, x_k, x_{k+1}))
$$

$$
\leq \lambda \max\{d(fx_i, fx_{i+1}) : 1 \leq i \leq k\},
$$

for all $x_1, x_2, x_3, x_4, \ldots, x_k, x_{k+1} \in X$, where $0 < \lambda < 1$ and

(2.6)
$$
d(T(u, u, \dots, u), T(v, v, \dots, v)) < d(fu, fv),
$$

for all distinct $u, v \in X$. Suppose further that $T(X^k) \subseteq f(X)$, $f(X)$ is complete and (f, T) is a weakly k-compatible pair. Then there exists a unique point $z \in X$ such that

$$
fz=z=T(z,z,\ldots,z).
$$

Proof. Let x_1, x_2, \ldots, x_k be arbitrary points in X and define

$$
fx_{n+k}=T(x_n,x_{n+1},\ldots,x_{n+k-1})
$$

for all $n \in N$. By proceeding as in [1], we can prove that $\{fx_n\}$ is a Cauchy sequence in $f(X)$. Since $f(X)$ is complete, there exists a point $z \in f(X)$ such that $fx_n \longrightarrow z$. Hence there exists a point $p \in X$ such that $z = fp$.

Now consider

$$
d(fx_{n+k}, T(p, p, \ldots, p)) = d(T(p, p, \ldots, p), T(x_n, x_{n+1}, \ldots, x_{n+k-1}))
$$

\n
$$
\leq d(T(p, p, \ldots, p), T(p, p, \ldots, p, x_n))
$$

\n+ $d(T(p, p, \ldots, p, x_n), T(p, p, \ldots, p, x_n, x_{n+1}))$
\n+ $d(T(p, p, \ldots, p, x_n, x_{n+1}), T(p, p, \ldots, p, x_n, x_{n+1}, x_{n+2}))$
\n+ $d(T(p, p, \ldots, p, x_n, x_{n+1}, x_{n+2}), T(p, p, \ldots, p, x_n, x_{n+1}, x_{n+2}, x_{n+3}))$
\n+ \ldots + $d(T(p, x_n, x_{n+1}, \ldots, x_{n+k-2}), T(x_n, x_{n+1}, \ldots, x_{n+k-1}))$
\n
$$
\leq \lambda d(fp, fx_n) + \lambda \max\{d(fp, fx_n), d(fx_n, fx_{n+1})\}
$$

\n+ $\lambda \max\{d(fp, fx_n), d(fx_n, fx_{n+1}), d(fx_{n+1}, fx_{n+2}), d(fx_{n+2}, fx_{n+3})\}$
\n+ \ldots + $\lambda \max\{d(fp, fx_n), d(fx_n, fx_{n+1}), \ldots, d(fx_{n+k-2}, fx_{n+k-1})\}.$

Letting $n \longrightarrow \infty$ we get

$$
d(fp, T(p, p, \ldots, p)) \leq 0
$$

so that $fp = T(p, p, \ldots, p)$.

Since (f, T) is weakly k-compatible we have

$$
f(T(p, p, \ldots, p)) = T(fp, fp, \ldots, fp)
$$

and so

$$
f^2p = f(fp) = f(T(p, p, ..., p)) = T(fp, fp, ..., fp).
$$

Thus

(i)
$$
fz = T(z, z, \ldots, z).
$$

We now have

$$
d(f^{2}p, fp) = d(T(fp, fp, \dots, fp), T(p, p, \dots, p)) < d(f^{2}p, fp),
$$

which is a contradiction. Therefore $f^2p = fp$ so that $fz = z$.

From (i), we now have

(ii)
$$
z = fz = T(z, z, \dots, z).
$$

To prove uniqueness, suppose that there exists a point $z^1 \neq z$ in X such that

$$
z^1 = fz^1 = T(z^1, z^1, \dots, z^1).
$$

Then

$$
d(z, z1) = d(T(z, z, ..., z), (T(z1, z1, ..., z1))< d(fz, fz1) from (2.6)= d(z, z1),
$$

which is a contradiction. Therefore $z = z^1$ proving that z is the unique point satisfying (ii). \Box

REFERENCES

- [1] Lj.B. Ciric and S.B. Presic, On Presic type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenian, $76(2)(2007)$, 143-147.
- [2] S. Banach, Theorie des operations lineaires, Manograic Mathematic Zne, Warsaw, 1932.
- [3] S.B. Presic, Sur une classe d'inequations aux differences finies et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd), $5(19)(1965)$, 75-78.

K.P.R. Rao and Md. Mustaq Ali

Department of Applied Mathematics Dr. M.R. Appa Row Campus Acharya Nagarjuna University NUZVID - 521201, KRISHNA DT., A.P. India E-mail address: kprrao2004@yahoo.com

Brian Fisher

Department of Mathematics University of Leicester Leicester, LE1 7RH U.K. E-mail address: fbr@leicester.ac.uk