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Some Presic Type Generalizations
of the Banach Contraction Principle

K.P.R. Rao, Md. Mustaq Ali and Brian Fisher

Abstract. In this paper, we extend and generalize Presic Type theo-
rems for a pair of maps and Jungck type maps.

1. Introduction and Preliminaries

In 1932 Banach [2] proved the following theorem:

Theorem 1.1 ([2]). Let (X, d) be a complete metric space and let T be a
mapping of X into X satisfying the inequality d(Tx, Ty) ≤ λd(x, y) for all
x, y ∈ X, where 0 ≤ λ < 1. Then T has a unique fixed point in X.

Since then, many generalizations of this principle have been made by
several authors. Considering the convergence of certain sequences Presic [3]
proved the following theorem.

Theorem 1.2 ([3]). Let (X, d) be a complete metric space, k a positive inte-
ger and let T be a mapping of Xk into X, satisfying the following contractive
type condition

(1.1)
d(T (x1, x2, x3, . . . , xk), T (x2, x3, x4, . . . , xk, xk+1))

≤ q1d(x1, x2) + q2d(x2, x3) + · · ·+ qkd(xk, xk+1)

for every x1, x2, x3, x4, . . . , xk, xk+1 ∈ X, where q1, q2, . . . , qk are non-negative
constants such that q1 + q2 + . . . + qk < 1. Then there exists a unique point
x ∈ X such that T (x, x, x, . . . , x) = x.

Moreover, if x1, x2, x3, . . . , xk are arbitrary points in X and if for all n ∈
N , xn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence {xn} is convergent
and lim xn = T (lim xn, lim xn, . . . , lim xn).

Ciric and Presic [1] generalized Theorem 1.2 as follows:
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Theorem 1.3. Let (X, d) be a complete metric space, k a positive integer
and let T be a mapping of Xk into X satisfying the following contractive
type condition

(1.2)
d(T (x1, x2, x3, . . . , xk), T (x2, x3, x4, . . . , xk, xk+1))

≤ λ max{d(xi, xi+1)/1 ≤ i ≤ k}
for every x1, x2, x3, x4, . . . , xk, xk+1 ∈ X, where 0 < λ < 1. Then there
exists a point x ∈ X such that T (x, x, x, . . . , x) = x.

Moreover, if x1, x2, x3, . . . , xk are arbitrary points in X and if for all n ∈
N , xn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence {xn} is convergent
and lim xn = T (lim xn, lim xn, . . . , lim xn). If in addition, we suppose that
on the diagonal ∆ ⊂ Xk, the condition

(1.3) d(T (u, u, . . . , u), T (v, v, . . . , v)) < d(u, v)

holds for all distinct u, v ∈ X, then x is the unique point in X with
T (x, x, . . . , x) = x.

Now in this paper we extend and generalize the above theorems for a pair
of mappings and Jungck type mappings.

2. Main result

Theorem 2.1. Let (X, d) be a complete metric space, k a positive integer
and let S, T be mappings of X2k into X satisfying the following contractive
type conditions

(2.1)
d(S(x1, x2, . . . , x2k−1, x2k), T (x2, x3, . . . , x2k, x2k+1))

≤ λ max{d(xi, xi+1) : 1 ≤ i ≤ 2k},
for all x1, x2, . . . , x2k, x2k+1 ∈ X and

(2.2)
d(T (y1, y2, . . . , y2k−1, y2k), S(y2, y3, . . . , y2k, y2k+1))

≤ λ max{d(yi, yi+1) : 1 ≤ i ≤ 2k},
for all y1, y2, . . . , y2k, y2k+1 ∈ X, where 0 ≤ λ < 1.

Suppose x1, x2, . . . , x2k are arbitrary points in X and for all n ∈ N let

x2k+2n−1 = S(x2n−1, x2n, x2n+1, . . . , x2n+2k−2)

and
x2k+2n = T (x2n, x2n+1, x2n+2, . . . , x2n+2k−1).

Then the sequence {xn} is convergent to some x ∈ X such that

(A) S(x, x, . . . , x) = x = T (x, x, . . . , x).

In addition, if
(i) 2kλ < 1, or
(ii) d(S(u, u, . . . , u), T (v, v, . . . , v)) < d(u, v),

for all distinct u, v ∈ X, then x is the unique point satisfying (A).
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Proof. Let αn = d(xn, xn+1). We claim that αn ≤ Kθn, for all n ∈ N , where
θ = λ1/2k and K = max{α1/θ1, α2/θ2, . . . , α2k/θ2k}. By selection of K we
have αn ≤ Kθn for n = 1, 2, . . . , 2k.

Now

α2k+1 = d(x2k+1, x2k+2)

= d(S(x1, x2, . . . , x2k−1, x2k), T (x2, x3, . . . , x2k, x2k+1))

≤ λ max{d(xi, xi+1) : i = 1, 2, . . . , 2k} (by (2.1))
= λ max{α1, α2, . . . , α2k−1, α2k}

≤ λ max{Kθ, Kθ2, . . . ,Kθ2k−1,Kθ2k}
= λKθ

= Kθ2k+1 (since θ = λ1/2k)

and so α2k+1 ≤ Kθ2k+1.
Similarly

α2k+2 = d(x2k+2, x2k+3)

= d(T (x2, x3, . . . , x2k, x2k+1), S(x3, x4, . . . , x2k+1, x2k+2))

≤ λ max{d(xi, xi+1) : i = 2, 3, . . . , 2k + 1} (by (2.2))
= λ max{αi/i = 2, 3, . . . , 2k + 1}

≤ λ max{Kθ2,Kθ3, . . . ,Kθ2k+1}
= λKθ2

= Kθ2k+2 (since θ = λ1/2k)

and so α2k+2 ≤ Kθ2k+2. Hence our claim is true.
Now, by our claim, for any n, p ∈ N , we have

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . . + d(xn+p−1, xn+p)
= αn + αn+1 + . . . + αn+p−1

≤ Kθn + Kθn+1 + . . . + Kθn+p−1

≤ K(θn + θn+1 + . . . + θn+p−1 + . . .)

= K
θn

1− θ
→ 0 (as n →∞).

Hence {xn} is a Cauchy sequence. Since X is a complete metric space,
there exists a point x ∈ X such that x = limn→∞ xn. Then for any integer



44Some Presic Type Generalizations of the Banach Contraction Principle

n, using (2.1) and (2.2), we have

d(S(x, x, . . . , x), x2n+2k−1) = d(S(x, x, . . . , x), S(x2n−1, x2n, . . . , x2n+2k−2))

≤ d(S(x, x, . . . , x), T (x, x, . . . , x, x2n−1))

+ d(T (x, x, . . . , x, x2n−1), S(x, x, . . . , x2n−1, x2n))

+ d(S(x, x, . . . , x, x2n−1, x2n), T (x, x, . . . , x, x2n−1, x2n, x2n+1))

+ d(T (x, x, . . . , x, x2n, x2n+1), S(x, x, . . . , x, x2n, x2n+1, x2n+2)) + . . .

+ d(S(x, x, x2n−1, x2n, . . . , x2n+2k−4), T (x, x2n−1, x2n, . . . , x2n+2k−3))

+ d(T (x, x2n−1, x2n, . . . , x2n+2k−3), S(x2n−1, x2n, . . . , x2n+2k−2))

≤ λd(x, x2n−1) + λ max{d(x, x2n−1), d(x2n−1, x2n)}
+ λ max{d(x, x2n−1), d(x2n−1, x2n), d(x2n, x2n+1)}+ . . .

+ λ max{d(x, x2n−1), d(x2n−1, x2n), d(x2n, x2n+1), d(x2n+1, x2n+2)}
+ . . . + λ max{d(x, x2n−1), d(x2n−1, x2n), . . . , d(x2n+2k−4, x2n+2k−3)}
+ λ max{d(x, x2n−1), d(x2n−1, x2n), . . . , d(x2n+2k−3, x2n+2k−2)}.

Taking the limit as n →∞, we get

d(S(x, x, . . . , x), x) ≤ 0

and so S(x, x, . . . , x) = x.
From (2.1), we have

d(x, T (x, x, . . . , x)) = d(S(x, x, . . . , x), T (x, x, . . . , x)) = 0

and so T (x, x, . . . , x) = x.
To prove the uniqueness of x, we suppose that there exists a point y 6= x

in X such that
S(y, y, . . . , y) = y = T (y, y, . . . , y).

Suppose (i) holds so that 2kλ < 1.

d(x, y) = d(S(x, x, . . . , x), T (y, y, . . . , y))

≤ d(S(x, x, . . . , x), T (x, x, . . . , x, y)) + d(T (x, x, . . . , x, y), S(x, x, . . . , x, y, y))

+ d(S(x, x, . . . , x, y, y), T (x, x, . . . , x, y, y, y))

+ d(T (x, x, . . . , x, y, y, y), S(x, x, . . . , x, y, y, y, y))

+ . . . + d(S(x, x, y, y, . . . , y), T (x, y, y, . . . , y))

+ d(T (x, y, y, . . . , y), S(y, y, y, . . . , y))

+ d(S(y, y, y, . . . , y), T (y, y, y, . . . , y))

≤ λd(x, y) + λd(x, y) + λd(x, y) + . . . + λd(x, y) + λd(x, y) + 0

= 2Kλd(x, y) < d(x, y),

a contradiction. Therefore y = x. �
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Suppose (ii) holds. Then

d(x, y) = d(S(x, x, . . . , x), T (y, y, . . . , y)) < d(x, y),

a contradiction and again y = x.

Corollary 2.1. Let (X, d) be a complete metric space, k a positive integer
and let S, T be mappings of X2k into X satisfying

(2.3)
d(S(x1, x2, . . . , x2k−1, x2k), T (x2, x3, . . . , x2k, x2k+1))

≤ q1d(x1, x2) + q2d(x2, x3) + . . . + q2kd(x2k, x2k+1),

for all x1, x2, x3, . . . , x2k, x2k+1 ∈ X and

(2.4)
d(T (y1, y2, . . . , y2k−1, y2k), S(y2, y3, . . . , y2k, y2k+1))

≤ q1d(y1, y2) + q2d(y2, y3) + . . . + q2kd(y2k, y2k+1)

for all y1, y2, . . . , y2k, y2k+1 ∈ X, where q1, q2, . . . , q2k are non-negative con-
stants such that q1 + q2 + . . . + q2k < 1. Then there exists unique x ∈ Xsuch
that

S(x, x, x, . . . , x) = x = T (x, x, x, . . . , x).

Proof. (2.3) and (2.4) imply the conditions (2.1) and (2.2) respectively with
λ = q1 + q2 + . . .+ q2k. Now from Theorem 2.1, there exists x ∈ X such that

S(x, x, . . . , x) = x = T (x, x, . . . , x).

To prove the uniqueness of x, suppose there exists a point y 6= x in X
such that

S(y, y, . . . , y) = y = T (y, y, . . . , y).
Then

d(x, y) = d(S(x, x, . . . , x), T (y, y, . . . , y))

≤ d(S(x, x, . . . , x), T (x, x, . . . , x, y)) + d(T (x, x, . . . , x, y), S(x, x, . . . , x, y, y))

+ d(S(x, x, . . . , x, y, y), T (x, x, . . . , x, y, y, y))

+ d(T (x, x, . . . , x, y, y, y), S(x, x, . . . , x, y, y, y, y)) + · · ·
+ d(S(x, x, y, y, . . . , y), T (x, y, y, . . . , y))

+ d(T (x, y, y, . . . , y), S(y, y, y, . . . , y))

+ d(S(y, y, y, . . . , y), T (y, y, y, . . . , y))

≤ q2kd(x, y) + q2k−1d(x, y) + . . . + q2d(x, y) + q1d(x, y) + 0

= (q1 + q2 + . . . + q2k−1 + q2k)d(x, y) < d(x, y),

which is a contradiction. Therefore y = x. �

Definition 2.1. Let X be a non empty set, let T be a mapping of Xk into
X and let f be a mapping of X into X. Then (f, T ) is said to be weakly a
k-compatible pair if f(T (p, p, . . . , p)) = T (fp, fp, . . . , fp), whenever p ∈ X
is such that fp = T (p, p, . . . , p).
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Theorem 2.2. Let (X, d) be a metric space, k a positive integer, let T be a
mapping of Xk into X and let f be a mapping of X into X satisfying

(2.5)
d(T (x1, x2, x3, . . . , xk), T (x2, x3, x4, . . . , xk, xk+1))

≤ λ max{d(fxi, fxi+1) : 1 ≤ i ≤ k},
for all x1, x2, x3, x4, . . . , xk, xk+1 ∈ X, where 0 < λ < 1 and

(2.6) d(T (u, u, . . . , u), T (v, v, . . . , v)) < d(fu, fv),

for all distinct u, v ∈ X. Suppose further that T (Xk) ⊆ f(X), f(X) is
complete and (f, T ) is a weakly k-compatible pair. Then there exists a unique
point z ∈ X such that

fz = z = T (z, z, . . . , z).

Proof. Let x1, x2, . . . , xk be arbitrary points in X and define

fxn+k = T (xn, xn+1, . . . , xn+k−1)

for all n ∈ N . By proceeding as in [1], we can prove that {fxn} is a Cauchy
sequence in f(X). Since f(X) is complete, there exists a point z ∈ f(X)
such that fxn −→ z. Hence there exists a point p ∈ X such that z = fp.

Now consider

d(fxn+k, T (p, p, . . . , p)) = d(T (p, p, . . . , p), T (xn, xn+1, . . . , xn+k−1))

≤ d(T (p, p, . . . , p), T (p, p, . . . , p, xn))

+ d(T (p, p, . . . , p, xn), T (p, p, . . . , p, xn, xn+1))

+ d(T (p, p, . . . , p, xn, xn+1), T (p, p, . . . , p, xn, xn+1, xn+2))

+ d(T (p, p, . . . , p, xn, xn+1, xn+2), T (p, p, . . . , p, xn, xn+1, xn+2, xn+3))

+ . . . + d(T (p, xn, xn+1, . . . , xn+k−2), T (xn, xn+1, . . . , xn+k−1))

≤ λd(fp, fxn) + λ max{d(fp, fxn), d(fxn, fxn+1)}
+ λ max{d(fp, fxn), d(fxn, fxn+1), d(fxn+1, fxn+2)}
+ λ max{d(fp, fxn), d(fxn, fxn+1), d(fxn+1, fxn+2), d(fxn+2, fxn+3)}
+ . . . + λ max{d(fp, fxn), d(fxn, fxn+1), . . . , d(fxn+k−2, fxn+k−1)}.

Letting n −→∞ we get

d(fp, T (p, p, . . . , p)) ≤ 0

so that fp = T (p, p, . . . , p).
Since (f, T ) is weakly k-compatible we have

f(T (p, p, . . . , p)) = T (fp, fp, . . . , fp)

and so
f2p = f(fp) = f(T (p, p, . . . , p)) = T (fp, fp, . . . , fp).

Thus

(i) fz = T (z, z, . . . , z).
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We now have

d(f2p, fp) = d(T (fp, fp, . . . , fp), T (p, p, . . . , p)) < d(f2p, fp),

which is a contradiction. Therefore f2p = fp so that fz = z.
From (i), we now have

(ii) z = fz = T (z, z, . . . , z).

To prove uniqueness, suppose that there exists a point z1 6= z in X such
that

z1 = fz1 = T (z1, z1, . . . , z1).
Then

d(z, z1) = d(T (z, z, . . . , z), (T (z1, z1, . . . , z1))

< d(fz, fz1) from (2.6)

= d(z, z1),

which is a contradiction. Therefore z = z1 proving that z is the unique point
satisfying (ii). �

References

[1] Lj.B. Ciric and S.B. Presic, On Presic type generalization of the Banach contraction
mapping principle, Acta Math. Univ. Comenian, 76(2)(2007), 143-147.

[2] S. Banach, Theorie des operations lineaires, Manograic Mathematic Zne, Warsaw,
1932.

[3] S.B. Presic, Sur une classe d’inequations aux differences finies et sur la convergence
de certaines suites, Publ. Inst. Math. (Beograd), 5(19)(1965), 75-78.

K.P.R. Rao and Md. Mustaq Ali
Department of Applied Mathematics
Dr. M.R. Appa Row Campus
Acharya Nagarjuna University
NUZVID - 521201, Krishna Dt., A.P.
India
E-mail address: kprrao2004@yahoo.com

Brian Fisher
Department of Mathematics
University of Leicester
Leicester, LE1 7RH
U.K.
E-mail address: fbr@leicester.ac.uk




