Some Presic Type Generalizations of the Banach Contraction Principle

K.P.R. RAO, MD. MUSTAQ ALI AND BRIAN FISHER

ABSTRACT. In this paper, we extend and generalize Presic Type theorems for a pair of maps and Jungck type maps.

1. INTRODUCTION AND PRELIMINARIES

In 1932 Banach [2] proved the following theorem:

Theorem 1.1 ([2]). Let (X,d) be a complete metric space and let T be a mapping of X into X satisfying the inequality $d(Tx,Ty) \leq \lambda d(x,y)$ for all $x, y \in X$, where $0 \leq \lambda < 1$. Then T has a unique fixed point in X.

Since then, many generalizations of this principle have been made by several authors. Considering the convergence of certain sequences Presic [3] proved the following theorem.

Theorem 1.2 ([3]). Let (X, d) be a complete metric space, k a positive integer and let T be a mapping of X^k into X, satisfying the following contractive type condition

(1.1)
$$d(T(x_1, x_2, x_3, \dots, x_k), T(x_2, x_3, x_4, \dots, x_k, x_{k+1})) \\ \leq q_1 d(x_1, x_2) + q_2 d(x_2, x_3) + \dots + q_k d(x_k, x_{k+1})$$

for every $x_1, x_2, x_3, x_4, \ldots, x_k, x_{k+1} \in X$, where q_1, q_2, \ldots, q_k are non-negative constants such that $q_1 + q_2 + \ldots + q_k < 1$. Then there exists a unique point $x \in X$ such that $T(x, x, x, \ldots, x) = x$.

Moreover, if $x_1, x_2, x_3, \ldots, x_k$ are arbitrary points in X and if for all $n \in N$, $x_{n+k} = T(x_n, x_{n+1}, \ldots, x_{n+k-1})$, then the sequence $\{x_n\}$ is convergent and $\lim x_n = T(\lim x_n, \lim x_n, \ldots, \lim x_n)$.

Ciric and Presic [1] generalized Theorem 1.2 as follows:

Received by the editors 18.10.2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47H10; 54H25.

Key words and phrases. Weakly k-compatible maps, Jungck Type maps, Common fixed point.

Theorem 1.3. Let (X, d) be a complete metric space, k a positive integer and let T be a mapping of X^k into X satisfying the following contractive type condition

(1.2)
$$d(T(x_1, x_2, x_3, \dots, x_k), T(x_2, x_3, x_4, \dots, x_k, x_{k+1})) \\ \leq \lambda \max\{d(x_i, x_{i+1})/1 \leq i \leq k\}$$

for every $x_1, x_2, x_3, x_4, \ldots, x_k, x_{k+1} \in X$, where $0 < \lambda < 1$. Then there exists a point $x \in X$ such that $T(x, x, x, \ldots, x) = x$.

Moreover, if $x_1, x_2, x_3, \ldots, x_k$ are arbitrary points in X and if for all $n \in N$, $x_{n+k} = T(x_n, x_{n+1}, \ldots, x_{n+k-1})$, then the sequence $\{x_n\}$ is convergent and $\lim x_n = T(\lim x_n, \lim x_n, \ldots, \lim x_n)$. If in addition, we suppose that on the diagonal $\Delta \subset X^k$, the condition

(1.3)
$$d(T(u, u, \dots, u), T(v, v, \dots, v)) < d(u, v)$$

holds for all distinct $u, v \in X$, then x is the unique point in X with T(x, x, ..., x) = x.

Now in this paper we extend and generalize the above theorems for a pair of mappings and Jungck type mappings.

2. Main result

Theorem 2.1. Let (X, d) be a complete metric space, k a positive integer and let S, T be mappings of X^{2k} into X satisfying the following contractive type conditions

(2.1)
$$\begin{aligned} & d(S(x_1, x_2, \dots, x_{2k-1}, x_{2k}), T(x_2, x_3, \dots, x_{2k}, x_{2k+1})) \\ & \leq \lambda \max\{d(x_i, x_{i+1}): \ 1 \leq i \leq 2k\}, \end{aligned}$$

for all $x_1, x_2, \ldots, x_{2k}, x_{2k+1} \in X$ and

(2.2)
$$\begin{aligned} d(T(y_1, y_2, \dots, y_{2k-1}, y_{2k}), S(y_2, y_3, \dots, y_{2k}, y_{2k+1})) \\ &\leq \lambda \max\{d(y_i, y_{i+1}): \ 1 \leq i \leq 2k\}, \end{aligned}$$

for all $y_1, y_2, \ldots, y_{2k}, y_{2k+1} \in X$, where $0 \le \lambda < 1$. Suppose x_1, x_2, \ldots, x_{2k} are arbitrary points in X and for all $n \in N$ let

$$x_{2k+2n-1} = S(x_{2n-1}, x_{2n}, x_{2n+1}, \dots, x_{2n+2k-2})$$

and

 $x_{2k+2n} = T(x_{2n}, x_{2n+1}, x_{2n+2}, \dots, x_{2n+2k-1}).$

Then the sequence $\{x_n\}$ is convergent to some $x \in X$ such that

(A)
$$S(x, x, ..., x) = x = T(x, x, ..., x).$$

In addition, if

- (i) $2k\lambda < 1$, or
- (ii) d(S(u, u, ..., u), T(v, v, ..., v)) < d(u, v),

for all distinct $u, v \in X$, then x is the unique point satisfying (A).

Proof. Let $\alpha_n = d(x_n, x_{n+1})$. We claim that $\alpha_n \leq K\theta^n$, for all $n \in N$, where $\theta = \lambda^{1/2k}$ and $K = \max\{\alpha_1/\theta^1, \alpha_2/\theta^2, \ldots, \alpha_{2k}/\theta^{2k}\}$. By selection of K we have $\alpha_n \leq K\theta^n$ for $n = 1, 2, \ldots, 2k$.

Now

$$\begin{aligned} \alpha_{2k+1} &= d(x_{2k+1}, x_{2k+2}) \\ &= d(S(x_1, x_2, \dots, x_{2k-1}, x_{2k}), T(x_2, x_3, \dots, x_{2k}, x_{2k+1})) \\ &\leq \lambda \max\{d(x_i, x_{i+1}) : i = 1, 2, \dots, 2k\} \quad (by (2.1)) \\ &= \lambda \max\{\alpha_1, \alpha_2, \dots, \alpha_{2k-1}, \alpha_{2k}\} \\ &\leq \lambda \max\{K\theta, K\theta^2, \dots, K\theta^{2k-1}, K\theta^{2k}\} \\ &= \lambda K\theta \\ &= K\theta^{2k+1} \quad (since \ \theta = \lambda^{1/2k}) \end{aligned}$$

and so $\alpha_{2k+1} \leq K\theta^{2k+1}$. Similarly

$$\begin{aligned} \alpha_{2k+2} &= d(x_{2k+2}, x_{2k+3}) \\ &= d(T(x_2, x_3, \dots, x_{2k}, x_{2k+1}), S(x_3, x_4, \dots, x_{2k+1}, x_{2k+2})) \\ &\leq \lambda \max\{d(x_i, x_{i+1}) : \ i = 2, 3, \dots, 2k+1\} \qquad (by (2.2)) \\ &= \lambda \max\{\alpha_i/i = 2, 3, \dots, 2k+1\} \\ &\leq \lambda \max\{K\theta^2, K\theta^3, \dots, K\theta^{2k+1}\} \\ &= \lambda K\theta^2 \\ &= K\theta^{2k+2} \qquad (\text{since } \theta = \lambda^{1/2k}) \end{aligned}$$

and so $\alpha_{2k+2} \leq K\theta^{2k+2}$. Hence our claim is true.

Now, by our claim, for any $n, p \in N$, we have

$$d(x_n, x_{n+p}) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p})$$

= $\alpha_n + \alpha_{n+1} + \dots + \alpha_{n+p-1}$
 $\leq K\theta^n + K\theta^{n+1} + \dots + K\theta^{n+p-1}$
 $\leq K(\theta^n + \theta^{n+1} + \dots + \theta^{n+p-1} + \dots)$
= $K\frac{\theta^n}{1-\theta} \to 0$ (as $n \to \infty$).

Hence $\{x_n\}$ is a Cauchy sequence. Since X is a complete metric space, there exists a point $x \in X$ such that $x = \lim_{n \to \infty} x_n$. Then for any integer

n, using (2.1) and (2.2), we have

$$\begin{split} d(S(x, x, \dots, x), x_{2n+2k-1}) &= d(S(x, x, \dots, x), S(x_{2n-1}, x_{2n}, \dots, x_{2n+2k-2})) \\ &\leq d(S(x, x, \dots, x), T(x, x, \dots, x, x_{2n-1})) \\ &+ d(T(x, x, \dots, x, x_{2n-1}), S(x, x, \dots, x_{2n-1}, x_{2n})) \\ &+ d(S(x, x, \dots, x, x_{2n-1}, x_{2n}), T(x, x, \dots, x, x_{2n-1}, x_{2n}, x_{2n+1})) \\ &+ d(T(x, x, \dots, x, x_{2n-1}, x_{2n}), T(x, x, \dots, x, x_{2n-1}, x_{2n}, x_{2n+1})) \\ &+ d(S(x, x, x_{2n-1}, x_{2n}, \dots, x_{2n+2k-4}), T(x, x_{2n-1}, x_{2n}, \dots, x_{2n+2k-3})) \\ &+ d(T(x, x_{2n-1}, x_{2n}, \dots, x_{2n+2k-4}), T(x, x_{2n-1}, x_{2n}, \dots, x_{2n+2k-3})) \\ &+ d(T(x, x_{2n-1}, x_{2n}, \dots, x_{2n+2k-4}), S(x_{2n-1}, x_{2n}, \dots, x_{2n+2k-3})) \\ &\leq \lambda d(x, x_{2n-1}) + \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n})\} \\ &+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2})\} \\ &+ \dots + \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), \dots, d(x_{2n+2k-4}, x_{2n+2k-3})\} \\ &+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), \dots, d(x_{2n+2k-4}, x_{2n+2k-3})\} \\ &+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), \dots, d(x_{2n+2k-4}, x_{2n+2k-3})\} \\ &+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), \dots, d(x_{2n+2k-4}, x_{2n+2k-3})\} \\ &+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), \dots, d(x_{2n+2k-4}, x_{2n+2k-3})\} \\ &+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), \dots, d(x_{2n+2k-4}, x_{2n+2k-3})\} \\ &+ \lambda \max\{d(x, x_{2n-1}), d(x_{2n-1}, x_{2n}), \dots, d(x_{2n+2k-4}, x_{2n+2k-3})\}. \end{split}$$

Taking the limit as $n \to \infty$, we get

$$d(S(x, x, \dots, x), x) \le 0$$

and so $S(x, x, \ldots, x) = x$.

From (2.1), we have

 $d(x,T(x,x,\ldots,x))=d(S(x,x,\ldots,x),T(x,x,\ldots,x))=0$

and so $T(x, x, \ldots, x) = x$.

To prove the uniqueness of x, we suppose that there exists a point $y\neq x$ in X such that

$$S(y, y, \dots, y) = y = T(y, y, \dots, y).$$

Suppose (i) holds so that $2k\lambda < 1$.

$$\begin{split} d(x,y) &= d(S(x,x,\ldots,x), T(y,y,\ldots,y)) \\ &\leq d(S(x,x,\ldots,x), T(x,x,\ldots,x,y)) + d(T(x,x,\ldots,x,y), S(x,x,\ldots,x,y,y)) \\ &+ d(S(x,x,\ldots,x,y,y), T(x,x,\ldots,x,y,y,y)) \\ &+ d(T(x,x,\ldots,x,y,y,y), S(x,x,\ldots,x,y,y,y,y)) \\ &+ \ldots + d(S(x,x,y,y,\ldots,y), T(x,y,y,\ldots,y)) \\ &+ d(T(x,y,y,\ldots,y), S(y,y,y,\ldots,y)) \\ &+ d(S(y,y,y,\ldots,y), T(y,y,y,\ldots,y)) \\ &\leq \lambda d(x,y) + \lambda d(x,y) + \lambda d(x,y) + \ldots + \lambda d(x,y) + \lambda d(x,y) + 0 \\ &= 2K\lambda d(x,y) < d(x,y), \\ \text{a contradiction. Therefore } y = x. \\ \Box$$

Suppose (ii) holds. Then

$$d(x,y) = d(S(x,x,\ldots,x),T(y,y,\ldots,y)) < d(x,y),$$

a contradiction and again y = x.

Corollary 2.1. Let (X, d) be a complete metric space, k a positive integer and let S, T be mappings of X^{2k} into X satisfying

(2.3)
$$\begin{aligned} d(S(x_1, x_2, \dots, x_{2k-1}, x_{2k}), T(x_2, x_3, \dots, x_{2k}, x_{2k+1})) \\ \leq q_1 d(x_1, x_2) + q_2 d(x_2, x_3) + \dots + q_{2k} d(x_{2k}, x_{2k+1}), \end{aligned}$$

for all $x_1, x_2, x_3, \ldots, x_{2k}, x_{2k+1} \in X$ and

(2.4)
$$d(T(y_1, y_2, \dots, y_{2k-1}, y_{2k}), S(y_2, y_3, \dots, y_{2k}, y_{2k+1}))$$

$$\leq q_1 d(y_1, y_2) + q_2 d(y_2, y_3) + \dots + q_{2k} d(y_{2k}, y_{2k+1})$$

for all $y_1, y_2, \ldots, y_{2k}, y_{2k+1} \in X$, where q_1, q_2, \ldots, q_{2k} are non-negative constants such that $q_1 + q_2 + \ldots + q_{2k} < 1$. Then there exists unique $x \in X$ such that

$$S(x, x, x, \dots, x) = x = T(x, x, x, \dots, x).$$

Proof. (2.3) and (2.4) imply the conditions (2.1) and (2.2) respectively with $\lambda = q_1 + q_2 + \ldots + q_{2k}$. Now from Theorem 2.1, there exists $x \in X$ such that

 $S(x, x, \dots, x) = x = T(x, x, \dots, x).$

To prove the uniqueness of x, suppose there exists a point $y \neq x$ in X such that

$$S(y, y, \dots, y) = y = T(y, y, \dots, y).$$

Then

$$\begin{split} d(x,y) &= d(S(x,x,\ldots,x),T(y,y,\ldots,y)) \\ &\leq d(S(x,x,\ldots,x),T(x,x,\ldots,x,y)) + d(T(x,x,\ldots,x,y),S(x,x,\ldots,x,y,y)) \\ &+ d(S(x,x,\ldots,x,y,y),T(x,x,\ldots,x,y,y,y)) \\ &+ d(T(x,x,\ldots,x,y,y,y),S(x,x,\ldots,x,y,y,y)) + \cdots \\ &+ d(S(x,x,y,y,\ldots,y),T(x,y,y,\ldots,y)) \\ &+ d(T(x,y,y,\ldots,y),S(y,y,y,\ldots,y)) \\ &+ d(S(y,y,y,\ldots,y),T(y,y,y,\ldots,y)) \\ &\leq q_{2k}d(x,y) + q_{2k-1}d(x,y) + \ldots + q_2d(x,y) + q_1d(x,y) + 0 \\ &= (q_1 + q_2 + \ldots + q_{2k-1} + q_{2k})d(x,y) < d(x,y), \end{split}$$
which is a contradiction. Therefore $y = x$.

Definition 2.1. Let X be a non empty set, let T be a mapping of X^k into X and let f be a mapping of X into X. Then (f,T) is said to be weakly a k-compatible pair if f(T(p, p, ..., p)) = T(fp, fp, ..., fp), whenever $p \in X$ is such that fp = T(p, p, ..., p).

Theorem 2.2. Let (X, d) be a metric space, k a positive integer, let T be a mapping of X^k into X and let f be a mapping of X into X satisfying

(2.5)
$$\begin{aligned} d(T(x_1, x_2, x_3, \dots, x_k), T(x_2, x_3, x_4, \dots, x_k, x_{k+1})) \\ &\leq \lambda \max\{d(fx_i, fx_{i+1}): \ 1 \leq i \leq k\}, \end{aligned}$$

for all $x_1, x_2, x_3, x_4, \ldots, x_k, x_{k+1} \in X$, where $0 < \lambda < 1$ and

$$(2.6) d(T(u, u, \dots, u), T(v, v, \dots, v)) < d(fu, fv),$$

for all distinct $u, v \in X$. Suppose further that $T(X^k) \subseteq f(X)$, f(X) is complete and (f,T) is a weakly k-compatible pair. Then there exists a unique point $z \in X$ such that

$$fz = z = T(z, z, \dots, z).$$

Proof. Let x_1, x_2, \ldots, x_k be arbitrary points in X and define

$$fx_{n+k} = T(x_n, x_{n+1}, \dots, x_{n+k-1})$$

for all $n \in N$. By proceeding as in [1], we can prove that $\{fx_n\}$ is a Cauchy sequence in f(X). Since f(X) is complete, there exists a point $z \in f(X)$ such that $fx_n \longrightarrow z$. Hence there exists a point $p \in X$ such that z = fp.

Now consider

$$\begin{split} d(fx_{n+k}, T(p, p, \dots, p)) &= d(T(p, p, \dots, p), T(x_n, x_{n+1}, \dots, x_{n+k-1})) \\ &\leq d(T(p, p, \dots, p), T(p, p, \dots, p, x_n)) \\ &+ d(T(p, p, \dots, p, x_n), T(p, p, \dots, p, x_n, x_{n+1})) \\ &+ d(T(p, p, \dots, p, x_n, x_{n+1}), T(p, p, \dots, p, x_n, x_{n+1}, x_{n+2})) \\ &+ d(T(p, p, \dots, p, x_n, x_{n+1}, x_{n+2}), T(p, p, \dots, p, x_n, x_{n+1}, x_{n+2}, x_{n+3})) \\ &+ \dots + d(T(p, x_n, x_{n+1}, \dots, x_{n+k-2}), T(x_n, x_{n+1}, \dots, x_{n+k-1})) \\ &\leq \lambda d(fp, fx_n) + \lambda \max\{d(fp, fx_n), d(fx_n, fx_{n+1}), d(fx_{n+1}, fx_{n+2})\} \\ &+ \lambda \max\{d(fp, fx_n), d(fx_n, fx_{n+1}), d(fx_{n+1}, fx_{n+2}), d(fx_{n+2}, fx_{n+3})\} \\ &+ \dots + \lambda \max\{d(fp, fx_n), d(fx_n, fx_{n+1}), \dots, d(fx_{n+k-2}, fx_{n+k-1})\}. \end{split}$$

Letting $n \longrightarrow \infty$ we get

$$d(fp, T(p, p, \dots, p)) \le 0$$

so that $fp = T(p, p, \ldots, p)$.

Since (f, T) is weakly k-compatible we have

$$f(T(p, p, \dots, p)) = T(fp, fp, \dots, fp)$$

and so

$$f^2 p = f(fp) = f(T(p, p, \dots, p)) = T(fp, fp, \dots, fp).$$

Thus

(i)
$$fz = T(z, z, \dots, z).$$

We now have

$$d(f^{2}p, fp) = d(T(fp, fp, \dots, fp), T(p, p, \dots, p)) < d(f^{2}p, fp),$$

which is a contradiction. Therefore $f^2 p = f p$ so that f z = z.

From (i), we now have

(ii)
$$z = fz = T(z, z, ..., z).$$

To prove uniqueness, suppose that there exists a point $z^1 \neq z$ in X such that

$$z^1 = f z^1 = T(z^1, z^1, \dots, z^1).$$

Then

$$d(z, z^{1}) = d(T(z, z, ..., z), (T(z^{1}, z^{1}, ..., z^{1}))$$

$$< d(fz, fz^{1}) \quad \text{from (2.6)}$$

$$= d(z, z^{1}),$$

which is a contradiction. Therefore $z = z^1$ proving that z is the unique point satisfying (ii).

References

- Lj.B. Ciric and S.B. Presic, On Presic type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenian, 76(2)(2007), 143-147.
- [2] S. Banach, Theorie des operations lineaires, Manograic Mathematic Zne, Warsaw, 1932.
- [3] S.B. Presic, Sur une classe d'inequations aux differences finies et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd), 5(19)(1965), 75-78.

K.P.R. RAO AND MD. MUSTAQ ALI

DEPARTMENT OF APPLIED MATHEMATICS DR. M.R. APPA ROW CAMPUS ACHARYA NAGARJUNA UNIVERSITY NUZVID - 521201, KRISHNA DT., A.P. INDIA *E-mail address*: kprrao2004@yahoo.com

BRIAN FISHER

DEPARTMENT OF MATHEMATICS UNIVERSITY OF LEICESTER LEICESTER, LE1 7RH U.K. *E-mail address*: fbr@leicester.ac.uk